2025-05-22 00:16:57
在電路的控制環(huán)節(jié),設(shè)計了硬件控制電路并編寫了相應(yīng)的控制程序。硬件電路基于DSP控制芯片,主要由電源模塊、采樣及A/D轉(zhuǎn)換模塊、DSP控制模塊、PWM輸出模塊、驅(qū)動電路模塊構(gòu)成。在程序方面,本文著重對移相脈波產(chǎn)生的方式、PID反饋控制的策略進(jìn)行了研究,同時也完成了信號采集、模數(shù)轉(zhuǎn)換、保護(hù)控制等模塊的程序編寫和調(diào)試。然后按照補償電源的參數(shù)要 求,選擇了基于 TMS320F2812(DSP)的移相全橋變換電路作為補償電源的拓?fù)浣Y(jié) 構(gòu)。討 論了長脈沖高穩(wěn)定磁場的研究意義、發(fā)展現(xiàn)狀和現(xiàn)今的難點,基于存在的問題提出 了對強磁場電源系統(tǒng)的優(yōu)化, 提出了補償電源的方案。目前,傳感器的前列是耦合到帶電電壓的**小電容器。蘇州大量程電壓傳感器
在本設(shè)計中為防止單臂直通設(shè)置了兩路保護(hù):1)在超前橋臂和滯后橋臂上分別放置電流霍爾分辨監(jiān)測兩橋臂上的電流值,電流霍爾的輸出端連接至保護(hù)電路。如果出現(xiàn)過電流則保護(hù)電路**終動作于PWM波輸出模塊,將4路輸出PWM波的比較器鎖死,使得輸出為低電平,進(jìn)而關(guān)斷橋臂上4個開關(guān)管。2)驅(qū)動電路模塊內(nèi)部有過流監(jiān)測。在所設(shè)計的驅(qū)動電路中,主驅(qū)動芯片M57962內(nèi)部有保護(hù)電路監(jiān)測IGBT的飽和壓降從而判斷是否過流。當(dāng)出現(xiàn)過流時M57962將***驅(qū)動信號實現(xiàn)對IGBT的關(guān)斷。蘇州大量程電壓傳感器假設(shè)我們拿著傳感器,然后把它的前列放在帶電導(dǎo)體附近。
為移相全橋逆變部分的 Simulink 仿真電路。負(fù)載等效至原邊用等值電阻代替,仿真主要調(diào)節(jié)諧振電容和諧振電感的參數(shù),以滿足所有開關(guān)管的零開通和軟關(guān)斷。依次為開關(guān)管驅(qū)動波形、橋臂上電壓波形和橋臂上電流波形。其中驅(qū)動波形中從低到高分別為開關(guān)管1、2、3、4的驅(qū)動波形(四個驅(qū)動的幅值有差別只為了便于分辨,實際驅(qū)動效果是相同的)。同一橋臂上兩開關(guān)管驅(qū)動有4μS的死區(qū)時間,滯后橋臂相對于超前橋臂的滯后時間為12.5μS。橋臂上是串聯(lián)的3a電阻和100μH電感,如果不存在移相,則橋臂上的電壓應(yīng)該是*有死區(qū)時間是0。由于移相角的存在,電壓占空比進(jìn)一步減小,減小的程度對應(yīng)是移相角的大小。
隨著集成化和高頻化的發(fā)展,開關(guān)器件本身的功耗和發(fā)熱問題成為限制集成化和高頻化進(jìn)一步發(fā)展的瓶頸,減小開關(guān)器件自身開關(guān)損耗促使了軟開關(guān)技術(shù)的推進(jìn)。傳統(tǒng)的諧振式、多諧振技術(shù)可以實現(xiàn)部分開關(guān)器件的ZVC或ZCS,但是這類諧振存在器件應(yīng)力高、變頻控制等缺點。脈沖寬度調(diào)制(PWM)效率高、動態(tài)性能好、線性度高,但是為了實現(xiàn)開關(guān)管的軟開關(guān),須在電路中引進(jìn)輔助的器件,這增加了主電路和控制電路的復(fù)雜性。在這樣的背景下,移相全橋技術(shù)應(yīng)運而生。相較于其他的全橋電路,移相全橋充分的利用了電路自身的寄生參數(shù),在合理的控制方案下實現(xiàn)開關(guān)管的軟開關(guān)。相較于傳統(tǒng)諧振軟開關(guān)技術(shù),移相全橋變換器又具有頻率恒定、開關(guān)管應(yīng)力小、無需輔助的諧振電路?;谝陨蠈Ρ确治?,移相全橋變換器作為我們磁體電源系統(tǒng)中的補償電源?;陔姽庑?yīng),在電場或電壓的作用下透過某些物質(zhì)的光會發(fā)生雙折射。
PID調(diào)節(jié)器是人們在工程實踐中摸索出來的一種實用性強并且控制原理簡單的校正裝置。1)比例項P**當(dāng)前信息,調(diào)節(jié)后的輸出與輸入信號呈比例關(guān)系,偏差一旦產(chǎn)生,控制器立即作用減少偏差。比例系數(shù)增大系統(tǒng)靈敏度增加,系統(tǒng)振蕩增強,大于某限定值時系統(tǒng)會變的不穩(wěn)定。當(dāng)*有比例控制時系統(tǒng)存在穩(wěn)態(tài)誤差;2)積分I控制輸出與輸入信號的累計誤差呈正比,積分項可以消除穩(wěn)態(tài)誤差,提高系統(tǒng)的無差度,改善系統(tǒng)的靜態(tài)性能。積分作用的強弱取決于積分時間常數(shù)TI,其值越大積分作用越弱。積分作用太強也會導(dǎo)致系統(tǒng)不穩(wěn)定。3)微分D控制中,控制器的輸出與輸入信號的微分呈正比,反應(yīng)信號的變化趨勢。并能再偏差信號變得太大之前,在系統(tǒng)中引入一個早期的修正信號,從而加快系統(tǒng)的動作速度,減少調(diào)節(jié)時間。微分項可以使系統(tǒng)超調(diào)量減少,響應(yīng)時間變快。按測量原理來分可以分為電阻分壓器、電容分壓器、電磁式電壓互感器、電容式電壓互感器、霍爾電壓傳感器等。杭州磁調(diào)制電壓傳感器現(xiàn)貨
在電壓傳感器中,測量是基于分壓器的。蘇州大量程電壓傳感器
隨著現(xiàn)代實驗研究不斷的深入和科學(xué)的不斷發(fā)展,科學(xué)家對強磁場環(huán)境的要求也越來越高,從而對脈沖強磁場的建設(shè)也提出了更高的要求。在歐美以及日本等發(fā)達(dá)**已經(jīng)較早建立了強磁場實驗室,主要有美國**強磁場**實驗室、法國**強磁場實驗室、德國德累斯頓強磁場實驗室、荷蘭萊米根強磁場實驗室以及日本東京大學(xué)強磁場實驗室。我國強磁場領(lǐng)域起步較晚,近年來,華中科技大學(xué)脈沖強磁場中心開展了大量 關(guān)于脈沖強磁場的研究工作。蘇州大量程電壓傳感器